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keitsgründen bei 100 8C aufgenommen. 1H-NMR (400 MHz, [D8]Toluol,
100 8C): d� 1.10 (s, C5Me5); IR (KBr): nÄ � 2962 s, 2906 s, 2851 s, 2720 w,
1453 m, 1372 m, 1093 w, 1025 w cmÿ1; C,H-Analyse (%): ber. für
C40H60Sm2Se2: C 48.06, H 6.05; gef.: C 47.86, H 5.89. Für die Röntgen-
strukturanalyse geeignete Kristalle wurden durch Umkristallisieren aus
siedendem Toluol erhalten.
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Regio- und stereoselektive Synthese von
g-Alkylidenbutenoliden durch Cyclisierung
dilithiierter 1,3-Dicarbonylverbindungen mit
N,N'-Dimethoxy-N,N'-dimethylethandiamid**
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Zahlreiche Naturstoffe, zu denen prominente Verbindun-
gen wie Dihydroxerulin, Tetrenolin, Freelingyne oder Pulvin-
säure zählen, gehören zur Substanzklasse der pharmakolo-
gisch wichtigen g-Alkylidenbutenolide.[1] Dihydroxerulin hat
sich beispielsweise als wichtiger nichttoxischer Inhibitor in
der Cholesterin-Biosynthese erwiesen,[2] und Tetrenolin wirkt
antibiotisch gegen Gram-positive Bakterien.[3] Obwohl be-
sonders a-Hydroxy-g-alkylidenbutenolide (durch Übergangs-
metall-katalysierte Kupplungs- und Reduktionsreaktionen
der entsprechenden Enoltriflate) wichtige Bausteine für die
Naturstoffsynthese sind, ist erst in jüngster Zeit durch
stereospezifische Eliminierung von l- und d-Gulono-1,4-
lacton ein effizienter stereoselektiver Zugang zu einer
speziellen Verbindung dieser Klasse, 5-(2-Hydroxyethyli-
den)-2(5H)-furanon, vorgestellt worden.[4] Durch den Einsatz
eines Kohlenhydrat-Derivates als Ausgangsverbindung in
dieser Reaktion bestehen jedoch naturgemäû kaum Möglich-
keiten, unterschiedlich substituierte Butenolide direkt herzu-
stellen. Zuvor beschriebene b-Eliminierungen zur Synthese
von (in der a-Position) alkyl- oder unsubstituierten g-
Alkylidenbutenoliden verliefen dagegen mit geringer[5] oder
ohne Stereoselektivität.[6] Wittig-Reaktionen geeigneter
Phosphorylide mit Methoxymaleinsäureanhydriden verlaufen
mit unerwünschter Regiochemie und zumeist unbefriedigen-
der Stereoselektivität.[7] Durch Wittig-Reaktionen alkylsub-
stituierter Maleinsäureanhydride[8] oder durch andere Me-
thoden[9] sind lediglich E/Z-Gemische von (in der a-Position)
alkyl- oder unsubstituierten g-Alkylidenbutenoliden herge-
stellt worden.

Insgesamt ist unseres Wissens nach keine Methode be-
kannt, die einen direkten und stereoselektiven Zugang zu
einer groûen Bandbreite unterschiedlich substituierter g-
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Alkylidenbutenolide bietet. Unser Konzept hierfür ist die
direkte Cyclisierung von 1,3-Dicarbonylverbindungen mit
Oxalsäure-Dielektrophilen 2. Trotz der Einfachheit dieser
Idee ist es bemerkenswerterweise erst 1990 erstmals gelun-
gen, 1,3-Dicarbonylverbindungen, die ein terminales Wasser-
stoffatom tragen (z. B. Acetylaceton), mit Oxalylchlorid in
Gegenwart von Lewis-Säuren zu cyclisieren.[10] Die Cyclisie-
rung erfolgte dabei über das zentrale Kohlenstoffatom und
über ein Sauerstoffatom der eingesetzten 1,3-Diketone unter
Bildung von 4-Acyl-5-alkyl-2,3-dioxo-2,3-dihydrofuranen.
Wir stellen hier die unseres Wissens ersten Cyclisierungen
von 1,3-Dicarbonylverbindungen mit Oxalsäure-Dielektro-
philen vor, die über den Angriff eines terminalen Kohlen-
stoffatoms des Nucleophils verlaufen. Diese Methode er-
möglicht einen einfachen regio- und stereoselektiven Zugang
zu einer Reihe von g-Alkylidenbutenoliden. Die 1,3-Dicar-
bonylverbindungen wurden in Form ihrer ambidenten Di-
anionen eingesetzt, um die gewünschte Regioselektivität zu
erzielen.[11, 12]

Erste Experimente ergaben allerdings, daû die Umsetzung
des Dianions des Acetessigesters 1 a mit Oxalsäureethylester
2 a oder Oxalylchlorid 2 b (durch Überaddition, Polymerisa-
tion oder Zersetzung) zur Bildung komplexer, nicht trennba-
rer Gemische führte (siehe Tabelle 1). Auch die Reaktion des
Dianions von 1 a mit 1,4-Dimethylpiperazin-2,3-dion 2 c,[13]

das zuvor erfolgreich mit zwei ¾quivalenten monofunktio-
neller Organolithiumverbindungen kondensiert worden war,
verlief erfolglos. Glücklicherweise konnte das Problem
schlieûlich durch den Einsatz des 1995 beschriebenen Wein-
reb-Amids[14] N,N'-Dimethoxy-N,N'-dimethylethandiamid
2 d, welches bisher ebenfalls lediglich mit einfachen Monoli-
thiumverbindungen wie Phenyllithium kondensiert worden
war,[14a] gelöst werden. Durch Umsetzung dieses Weinreb-
Oxalsäureamids mit dem Dianion des Acetessigesters 1 a
konnte nun eine Cyclisierung induziert und das g-Alkyliden-
butenolid 3 a in 75 % Ausbeute hergestellt werden (Schema 1,
Tabelle 1). Das Produkt entstand sowohl regioselektiv (durch
Cyclisierung über das terminale Kohlenstoff- und über das
benachbarte Sauerstoffatom des Dianions) als auch vollkom-
men stereoselektiv. Die (E-) Konfiguration der semicycli-
schen Doppelbindung konnte am Beispiel des g-Alkyliden-
butenolids 3 b, welches durch Umsetzung von 2 d mit dem
Dianion von Acetessigsäure-tert-butylester 1 b in 73 % Aus-
beute hergestellt wurde (Tabelle 2), durch NOE-NMR-Mes-
sungen zweifelsfrei bewiesen werden. Optimale Ausbeuten
wurden erzielt, wenn 1.2 ¾quivalente des Dianions eingesetzt
wurden, wenn das Weinreb-Oxalamid 2 d zur Lösung des
Dianions bei ÿ78 8C zugegeben wurde und wenn die Reak-
tionslösung innerhalb von ca. 6 h auf Raumtemperatur auf-
gewärmt und anschlieûend mit Salzsäure versetzt wurde

(Tabelle 1). Mit zwei ¾quivalenten des Dianions konnte 3 a
in noch 52 % Ausbeute isoliert werden.

Nach Harris et al. führte die Umsetzung des Bis(N-Meth-
oxy-N-methylamids) eines Glutarsäurederivates mit dem
Dianion des Acetessigesters 1 b zur Bildung eines offenket-
tigen Produktes.[15a] Gar kein Umsatz wurde dagegen bei der
Reaktion des einfachen N-Methoxy-N-methylacetamids mit
dem Monoanion von Acetophenon erhalten.[15b] Bei der von
uns vorgestellten, unseres Wissens nach ersten Cyclisierung
eines Bis-Weinreb-Amids ist offenbar die intramolekulare
Bildung des Fünfringes gegenüber der Bildung offenkettiger
1:2-Produkte bevorzugt. Das Produkt wird wahrscheinlich
durch den regioselektiven Angriff des terminalen Kohlen-
stoffatoms des Dianions auf das Substrat und die anschlie-
ûende ebenfalls regioselektive Cyclisierung über das benach-
barte Sauerstoffatom gebildet. Unsere Arbeitshypothese zur
Erklärung der Regioselektivität des Ringschlusses besteht in
der Komplexierung eines Lithiumatoms durch das Amid- und
das Enolat-Sauerstoffatom im Intermediat A (Schema 1).
Diese Chelatisierung bringt die Amid- und die Enolatfunk-
tion in Nachbarschaft zueinander und begünstigt somit einen
regioselektiven Ringschluû unter Bildung des Intermediats
B.[16] Die beiden fünfgliedrigen Chelatkomplexe des Inter-
mediats B werden schlieûlich unter Bildung der Carbonyl-
gruppen durch Salzsäure gespalten. Die Tatsache, daû bei der
Umsetzung E-konfigurierter g-Alkylidenbutenolide mit
Chlorsulfonsäure[8] und bei deren Herstellung durch stereo-

Schema 1. Ein möglicher Mechanismus der Reaktion des Dianions von 1a
mit N,N'-Dimethoxy-N,N'-dimethylethandiamid 2d. LDA�Lithiumdiiso-
propylamid.

Tabelle 1. Optimierung der Reaktion des Dianions von 1 a mit den
Oxalsäure-Dielektrophilen 2 a ± d.

Nr. 2 T t ¾quiv. (1a) Ausb. (3a)
[8C] [h] [%]

1 a ÿ 78!20 6 1.0 0
2 b ÿ 78!20 6 1.0 0
3 c ÿ 78!20 6 1.0 0
4 d ÿ 78!20 6 1.0 69
5 d ÿ 78!20 6 2.0 52
6 d ÿ 78!20 6 1.2 75
7 d ÿ 78!ÿ 40 5 1.2 64
8 d 0!20 4 1.2 0
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spezifische Eliminierung bei nicht genügend tiefer Tempera-
tur[4c] Gemische geometrischer Isomere erhalten werden, legt
die Vermutung nahe, daû die in der vorliegenden Arbeit
beobachtete Stereoselektivität zugunsten der Bildung E-
konfigurierter g-Alkylidenbutenolide nicht thermodyna-
misch, sondern kinetisch kontrolliert ist.

Durch Umsetzung des Weinreb-Oxalamids 2 d mit den
Dianionen von Acetylaceton 1 c, N,N-Diethylacetessigsäure-
amid 1 d und Benzoylaceton 1 e konnten die g-Alkylidenbu-
tenolide 3 c, 3 d bzw. 3 e in zumeist guten Ausbeuten und mit
sehr guten Stereoselektivitäten erhalten werden (Tabelle 2).

Obwohl für die Synthese des Butenolids 3 c in drei Experi-
menten eine E/Z-Selektivität von >98:2 erzielt wurde, ist in
einem Experiment (wahrscheinlich aufgrund zu hoher Tem-
peratur bei der Zugabe von 2 d) lediglich ein Isomerenge-
misch (5:1) isoliert worden, was eine unabhängige Bestäti-
gung der E-Konfiguration der semicyclischen Doppelbindung
ermöglichte: In Analogie zu den 1H-NMR-Daten ähnlicher
Verbindungen[4] wiesen beide CH-Signale der Hauptkompo-
nente (E)-3 c eine gröûere chemische Verschiebung als die
entsprechenden Signale der Minderkomponente (Z)-3 c auf.
Ausgehend von den R1- oder R2-substituierten Acetessig-
estern 1 f ± i wurden die entsprechend substituierten Bute-
nolide 3 f ± i in guten Ausbeuten und mit sehr guten Stereo-
selektivitäten hergestellt. Im Falle der Butenolide 3 f und 3 g
wurden ausgezeichnete Stereoselektivitäten zugunsten der Z-
Isomere erzielt. Die Z-Konfiguration von 3 g wurde durch
NOE-NMR-Messungen zweifelsfrei bewiesen. Die vollstän-
dige Selektivitätsumkehr erklären wir mit dem sterischen
Einfluû der Alkylsubstituenten in der b-Position des Bute-
nolids.[8]

Durch den Einsatz cyclischer 1,3-Dicarbonylverbindungen
1 j ± o lieûen sich die interessanten g-Alkylidenbutenolide des
Typs 3 j ± o auf einfache Weise synthetisieren: Die Umsetzung
des Oxalamids 2 d mit den Dianionen der 2-Acetyl-g-butyro-
lactone 1 j ± m lieferte die Butenolide 3 j ± m in zumeist guten
Ausbeuten und mit sehr guten Stereoselektivitäten zugunsten
der E-Isomere. Ausgehend von 2-Acetylcyclopentanon 1 n
konnte das Butenolid 3 n in guter Ausbeute hergestellt
werden. Weiterhin wurde ausgehend von 2-Acetylcyclohexa-
non 1 o das Butenolid 3 o hergestellt. Die geringe Ausbeute
kann durch die notwendige Abtrennung des regioisomeren
Nebenproduktes, das durch Cyclisierung über das sekundäre
a-ständige Ringkohlenstoffatom von 2-Acetylcyclohexanon
entstanden ist, erklärt werden. Die Reaktion von 2 d mit dem
Dianion von 2-Acetyltetralon 1 p lieferte das Butenolid 3 p in
guter Ausbeute und mit sehr guter Stereoselektivität. Durch
Umsetzung von 2 d mit dem, unseres Wissens nach bisher
nicht beschriebenen Dianion von 3-Acetyl-2,3-dihydrobenzo-
furan-2-on 1 q konnte das g-Alkylidenbutenolid 3 q, ein
Analogon des Naturstoffs Calycin,[17] in guter Ausbeute und
mit sehr guter Stereoselektivität erhalten werden.

Durch Cyclisierung der Dianionen der Dicarbonylverbin-
dungen 1 a ± q mit N,N'-Dimethoxy-N,N'-dimethylethandi-
amid 2 d konnten eine Reihe unterschiedlich substituierter
a-Hydroxy-g-alkylidenbutenolide regio- und stereoselektiv
hergestellt werden. Die für die Butenolide 3 a ± q erzielten
Ausbeuten sind angesichts der Tatsache, daû aufgrund der
labilen Oxalsäurestruktur des Weinreb-Amids 2 d prinzipiell
eine Reihe von Nebenreaktionen (z. B. Decarbonylierung[14a])
möglich sind, insgesamt sehr zufriedenstellend.[18] Die vorge-
stellte Reaktion ist eine erhebliche Erweiterung der Metho-
den, die zur Herstellung der pharmakologisch relevanten und
für die Naturstoffsynthese wichtigen g-Alkylidenbutenolide
bekannt sind, und besticht durch die Einfachheit ihrer
Ausführung.

Experimentelles

Typische Arbeitsvorschrift : Herstellung des g-Alkylidenbutenolids 3a :
Eine Lösung von Lithiumdiisopropylamid (LDA) in THF wurde durch
Zutropfen von nBuLi (1.44 mL, 3.4 mmol, 2.35m Lösung in n-Hexan) zu
einer Lösung von Diisopropylamin (0.44 mL, 3.4 mmol) in THF (20 mL)
bei 0 8C hergestellt. Nach 15 min Rühren bei 0 8C wurde 1a (0.19 mL,
1.47 mmol) zugegeben, und die Lösung wurde 45 min bei 0 8C gerührt.
Anschlieûend wurden bei ÿ78 8C zu dieser Lösung zunächst N,N,N',N'-
Tetramethylethylendiamin (TMEDA; 0.5 mL, 3.4 mmol) und anschlieûend
eine Lösung von 2 d (220 mg, 1.25 mmol) in THF (4 mL) zugegeben. Die
Temperatur der Reaktionslösung wurde innerhalb von 5.5 h auf 0 8C
erhöht. Das Kühlbad wurde entfernt, und die Reaktionsmischung wurde
30 min bei 20 8C gerührt. Anschlieûend wurden 4 mL einer 10proz.
wäûrigen HCl-Lösung zugegeben, es wurde 10 min gerührt, wonach
20 mL einer 10proz. wäûrigen HCl-Lösung zugefügt wurden. Die wäûrige
Phase wurde mehrfach mit THF/Diethylether (1/3) extrahiert. Die
vereinigten organischen Phasen wurden getrocknet (MgSO4), filtriert,
und das Lösungsmittel des Filtrates wurde am Rotationsverdampfer
entfernt. Durch Reinigung des Rückstandes durch präparative Chromato-
graphie (Kieselgel, Ether/Petrolether, 1/10!1/3) wurden 170 mg eines
farblosen Feststoffes erhalten. 1H-NMR ([D6]Aceton, 200 MHz): d� 1.32
(t, J� 8 Hz, 3H, CH3), 4.22 (q, J� 8 Hz, 2H, CH2), 5.71 (s, 1H, CHCO2Et),
7.20 (s, 1 H, Ring-CH); 13C-NMR ([D6]Aceton, 50 MHz): d� 14.43 (CH3),
60.94 (CH2), 98.68 (CHCO2Et), 108.76 (Ring-CH), 150.34, 160.74, 164.22,

Tabelle 2. Synthese der g-Alkylidenbutenolide 3a ± q.[a]

3 R1 R2 R3 Ausb. [%]

a H H OCH2CH3 75
b H H OC(CH3)3 73
c H H CH3 56
d H H N(CH2CH3)2 63
e H H C6H5 57
f CH3 H OCH3 70
g CH2CH3 H OCH2CH3 54
h H CH3 OCH2CH3 71
i H CH2CH3 OCH2CH3 43
j H ÿCH2CH2Oÿ 73
k H ÿCH2CH(CH3)Oÿ 60
l H ÿCH2CH(CH2CH3)Oÿ 38
m CH3 ÿCH2CH2Oÿ 20
n H ÿCH2CH2CH2ÿ 75
o H ÿCH2CH2CH2CH2ÿ 23
p H ÿCH2CH2(C6H4)ÿ 74
q H ÿ(C6H4)Oÿ 52

[a] Im Fall von 3a ± e und von 3 h ± q betrug das E :Z-Verhältnis >98:2; bei
3 f und 3g betrug es 1:40 bzw. <2:98.
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166.10 (C); MS (EI, 70 eV): 184 (M�, 17), 156 (20), 139 (69), 69 (100). Alle
neuen Verbindungen wurden durch spektroskopische Methoden und durch
hochaufgelöste Massenspektren und/oder Elementaranalysen charakteri-
siert.
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Das Hexacarbaboran arachno-C6B6H12 und ein
methyliertes Pentacarbaboran arachno-
CH3C5B7H12: Bereiche mit beginnenden
Kohlenwasserstoffeigenschaften in
Boranclustern**
Bohumír Grüner, TomaÂsÏ Jelínek, ZbyneÏk PlzaÂk,
John D. Kennedy, Daniel L. Ormsby, Robert Greatrex
und Bohumil SÏ tíbr*

Die Grundstruktur der Kohlenwasserstoffe weist Elemente
des Diamant- oder des Graphitgitters oder Kombinationen
aus beiden mit peripher gebundenem Wasserstoff auf. Allen
Polyborangerüsten liegen die käfigartigen Dreieckspolyeder
zugrunde, deren Eckpunkte mit untereinander verbundenen
BH-Einheiten besetzt sind. Bei gemischten Hydriden treten
Zwischenstufen dieser Strukturtypen auf, und es besteht ein
groûes Interesse, zu erfahren, welcher Strukturtyp begünstigt
oder benachteiligt wird, wenn das Kohlenstoff/Bor-Verhältnis
verändert wird. Gibt es bei zunehmendem Kohlenstoffgehalt
einen abrupten Übergang vom Borancluster zum Kohlen-
wasserstoffskelett oder werden vielmehr Bereiche mit Koh-
lenwasserstoff- bzw. Boraneigenschaften nach und nach im
gleichen Molekül auftreten? Dieses Verhalten ist möglicher-
weise bei einem C/B-Verhältnis von ungefähr eins zu erwarten.

Das hoch substituierte Carboran C6B6H6Et6 1 hat die
zwölfeckige polyedrische Trommel-Struktur I.[1] Dies ist
formal eine arachno-Struktur, die aus dem geschlossenen
14eckigen 1:6:6:1-D6d-Polyeder II durch Entfernen der api-
calen sechsfach gebundenen Eckpunkte erhalten wird. Wir
dagegen berichten hier, daû die unsubstituierte Verbindung
C6B6H12 2 eine davon deutlich abweichende m-6,9-(CH�CH)-
arachno-5,6,8,10-C4B6H10-Struktur (Abbildung 1) aufweist, in
der ein zehneckiger arachno-C4B6-Cluster durch eine Ethy-
lengruppe mit Kohlenwasserstoffeigenschaften überbrückt
wird (Struktur III). Dies ist ebenfalls formal eine zwölfeckige
polyedrische arachno-Struktur, die aus dem geschlossenen
14eckigen 2:2:2:4:2:2-C2v-Polyeder IV durch Entfernen zwei-
er sechsfach gebundener Eckpunkte entsteht.

2 wurde neben den bereit beschriebenen Tetracarbabora-
nen[2] und anderen Carboranen durch die Umsetzung von 4,5-
C2B7H9 mit Acetylen in Et2O in Gegenwart von 0.1 ¾quiva-


