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keitsgriinden bei 100°C aufgenommen. 'H-NMR (400 MHz, [Dg]Toluol,
100°C): 6=1.10 (s, CsMes); IR (KBr): 7#=2962s, 2906s, 2851s, 2720w,
1453m, 1372m, 1093w, 1025wcm™'; CH-Analyse (%): ber. fiir
CyoHgSm,Se,: C 48.06, H 6.05; gef.: C 47.86, H 5.89. Fiir die Rontgen-
strukturanalyse geeignete Kristalle wurden durch Umkristallisieren aus
siedendem Toluol erhalten.
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Strukturen wurden als ,supplementary publication no.“ CCDC-
112873 (2) und CCDC-112874 (3) beim Cambridge Crystallographic
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folgender Adresse in Grofbritannien angefordert werden: CCDC, 12
Union Road, Cambridge CB21EZ (Fax: (444)1223-336-033; E-mail:
deposit@ccdc.cam.ac.uk).

Regio- und stereoselektive Synthese von
y-Alkylidenbutenoliden durch Cyclisierung
dilithiierter 1,3-Dicarbonylverbindungen mit
N,N’-Dimethoxy-N,N'-dimethylethandiamid**

Peter Langer* und Martin Stoll

Professor Armin de Meijere zum 60. Geburtstag gewidmet

Zahlreiche Naturstoffe, zu denen prominente Verbindun-
gen wie Dihydroxerulin, Tetrenolin, Freelingyne oder Pulvin-
sdure zdhlen, gehoren zur Substanzklasse der pharmakolo-
gisch wichtigen y-Alkylidenbutenolide.['! Dihydroxerulin hat
sich beispielsweise als wichtiger nichttoxischer Inhibitor in
der Cholesterin-Biosynthese erwiesen,? und Tetrenolin wirkt
antibiotisch gegen Gram-positive Bakterien.’l Obwohl be-
sonders a-Hydroxy-y-alkylidenbutenolide (durch Ubergangs-
metall-katalysierte Kupplungs- und Reduktionsreaktionen
der entsprechenden Enoltriflate) wichtige Bausteine fiir die
Naturstoffsynthese sind, ist erst in jiingster Zeit durch
stereospezifische Eliminierung von L- und D-Gulono-1,4-
lacton ein effizienter stereoselektiver Zugang zu einer
speziellen Verbindung dieser Klasse, 5-(2-Hydroxyethyli-
den)-2(5H)-furanon, vorgestellt worden. Durch den Einsatz
eines Kohlenhydrat-Derivates als Ausgangsverbindung in
dieser Reaktion bestehen jedoch naturgemifl kaum Moglich-
keiten, unterschiedlich substituierte Butenolide direkt herzu-
stellen. Zuvor beschriebene S-Eliminierungen zur Synthese
von (in der «-Position) alkyl- oder unsubstituierten y-
Alkylidenbutenoliden verliefen dagegen mit geringerP oder
ohne Stereoselektivitit.!! Wittig-Reaktionen geeigneter
Phosphorylide mit Methoxymaleinsdureanhydriden verlaufen
mit unerwiinschter Regiochemie und zumeist unbefriedigen-
der Stereoselektivitit.”! Durch Wittig-Reaktionen alkylsub-
stituierter Maleinsdureanhydridel® oder durch andere Me-
thoden! sind lediglich E/Z-Gemische von (in der a-Position)
alkyl- oder unsubstituierten y-Alkylidenbutenoliden herge-
stellt worden.

Insgesamt ist unseres Wissens nach keine Methode be-
kannt, die einen direkten und stereoselektiven Zugang zu
einer groflen Bandbreite unterschiedlich substituierter y-
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Alkylidenbutenolide bietet. Unser Konzept hierfiir ist die
direkte Cyclisierung von 1,3-Dicarbonylverbindungen mit
Oxalsdure-Dielektrophilen 2. Trotz der Einfachheit dieser
Idee ist es bemerkenswerterweise erst 1990 erstmals gelun-
gen, 1,3-Dicarbonylverbindungen, die ein terminales Wasser-
stoffatom tragen (z.B. Acetylaceton), mit Oxalylchlorid in
Gegenwart von Lewis-Séduren zu cyclisieren.'”! Die Cyclisie-
rung erfolgte dabei iiber das zentrale Kohlenstoffatom und
iiber ein Sauerstoffatom der eingesetzten 1,3-Diketone unter
Bildung von 4-Acyl-5-alkyl-2,3-dioxo-2,3-dihydrofuranen.
Wir stellen hier die unseres Wissens ersten Cyclisierungen
von 1,3-Dicarbonylverbindungen mit Oxalsdure-Dielektro-
philen vor, die tiber den Angriff eines terminalen Kohlen-
stoffatoms des Nucleophils verlaufen. Diese Methode er-
moglicht einen einfachen regio- und stereoselektiven Zugang
zu einer Reihe von y-Alkylidenbutenoliden. Die 1,3-Dicar-
bonylverbindungen wurden in Form ihrer ambidenten Di-
anionen eingesetzt, um die gewiinschte Regioselektivitit zu
erzielen.!'’: 12]

Erste Experimente ergaben allerdings, da die Umsetzung
des Dianions des Acetessigesters 1a mit Oxalsdureethylester
2a oder Oxalylchlorid 2b (durch Uberaddition, Polymerisa-
tion oder Zersetzung) zur Bildung komplexer, nicht trennba-
rer Gemische fiihrte (siehe Tabelle 1). Auch die Reaktion des
Dianions von 1a mit 1,4-Dimethylpiperazin-2,3-dion 2¢,["*!

lYIe
N._O Me
X X [ I MeO\,I\l N\OMe
o) N0 Me O
Me

2a (X= OEt)

2b (X=Cl) 2 2d

das zuvor erfolgreich mit zwei Aquivalenten monofunktio-
neller Organolithiumverbindungen kondensiert worden war,
verlief erfolglos. Gliicklicherweise konnte das Problem
schlieBlich durch den Einsatz des 1995 beschriebenen Wein-
reb-Amids!"  N,N’-Dimethoxy-N,N'-dimethylethandiamid
2d, welches bisher ebenfalls lediglich mit einfachen Monoli-
thiumverbindungen wie Phenyllithium kondensiert worden
war, 14 gelost werden. Durch Umsetzung dieses Weinreb-
Oxalsdureamids mit dem Dianion des Acetessigesters 1a
konnte nun eine Cyclisierung induziert und das y-Alkyliden-
butenolid 3ain 75 % Ausbeute hergestellt werden (Schema 1,
Tabelle 1). Das Produkt entstand sowohl regioselektiv (durch
Cyclisierung iiber das terminale Kohlenstoff- und iiber das
benachbarte Sauerstoffatom des Dianions) als auch vollkom-
men stereoselektiv. Die (E-) Konfiguration der semicycli-
schen Doppelbindung konnte am Beispiel des y-Alkyliden-
butenolids 3b, welches durch Umsetzung von 2d mit dem
Dianion von Acetessigsdure-fert-butylester 1b in 73% Aus-
beute hergestellt wurde (Tabelle 2), durch NOE-NMR-Mes-
sungen zweifelsfrei bewiesen werden. Optimale Ausbeuten
wurden erzielt, wenn 1.2 Aquivalente des Dianions eingesetzt
wurden, wenn das Weinreb-Oxalamid 2d zur Losung des
Dianions bei —78°C zugegeben wurde und wenn die Reak-
tionslosung innerhalb von ca. 6 h auf Raumtemperatur auf-
gewdrmt und anschlieBend mit Salzsdure versetzt wurde

1920 © WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999

1. 2.7 Aquiv. LDA 0
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Schema 1. Ein moglicher Mechanismus der Reaktion des Dianions von 1a
mit N,N'-Dimethoxy-N,N'-dimethylethandiamid 2d. LDA = Lithiumdiiso-
propylamid.

Tabelle 1. Optimierung der Reaktion des Dianions von la mit den
Oxalsdure-Dielektrophilen 2a—d.

Nr. 2 T t Aquiv. (1a) Ausb. (3a)
[°C] (h] [%]
1 a —78 =20 6 1.0 0
2 b —78 =20 6 1.0 0
3 c — 78 =20 6 1.0 0
4 d —78 =20 6 1.0 69
5 d —78 =20 6 2.0 52
6 d —78 =20 6 1.2 75
7 d —78 — —40 5 1.2 64
8 d 0—20 4 1.2 0

(Tabelle 1). Mit zwei Aquivalenten des Dianions konnte 3a
in noch 52 % Ausbeute isoliert werden.

Nach Harris et al. fithrte die Umsetzung des Bis(/N-Meth-
oxy-N-methylamids) eines Glutarsdurederivates mit dem
Dianion des Acetessigesters 1b zur Bildung eines offenket-
tigen Produktes.'" Gar kein Umsatz wurde dagegen bei der
Reaktion des einfachen N-Methoxy-N-methylacetamids mit
dem Monoanion von Acetophenon erhalten.['*"! Bei der von
uns vorgestellten, unseres Wissens nach ersten Cyclisierung
eines Bis-Weinreb-Amids ist offenbar die intramolekulare
Bildung des Fiinfringes gegeniiber der Bildung offenkettiger
1:2-Produkte bevorzugt. Das Produkt wird wahrscheinlich
durch den regioselektiven Angriff des terminalen Kohlen-
stoffatoms des Dianions auf das Substrat und die anschlie-
Bende ebenfalls regioselektive Cyclisierung iiber das benach-
barte Sauerstoffatom gebildet. Unsere Arbeitshypothese zur
Erklarung der Regioselektivitit des Ringschlusses besteht in
der Komplexierung eines Lithiumatoms durch das Amid- und
das Enolat-Sauerstoffatom im Intermediat A (Schema 1).
Diese Chelatisierung bringt die Amid- und die Enolatfunk-
tion in Nachbarschaft zueinander und begiinstigt somit einen
regioselektiven Ringschluf3 unter Bildung des Intermediats
B.l°l Die beiden fiinfgliedrigen Chelatkomplexe des Inter-
mediats B werden schlieBlich unter Bildung der Carbonyl-
gruppen durch Salzsdure gespalten. Die Tatsache, daf3 bei der
Umsetzung E-konfigurierter y-Alkylidenbutenolide mit
Chlorsulfonsdure® und bei deren Herstellung durch stereo-
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spezifische Eliminierung bei nicht gentigend tiefer Tempera-
turl*! Gemische geometrischer Isomere erhalten werden, legt
die Vermutung nahe, daf} die in der vorliegenden Arbeit
beobachtete Stereoselektivitdt zugunsten der Bildung E-
konfigurierter y-Alkylidenbutenolide nicht thermodyna-
misch, sondern Kinetisch kontrolliert ist.

Durch Umsetzung des Weinreb-Oxalamids 2d mit den
Dianionen von Acetylaceton 1¢, N,N-Diethylacetessigsdure-
amid 1d und Benzoylaceton 1e konnten die y-Alkylidenbu-
tenolide 3¢, 3d bzw. 3e in zumeist guten Ausbeuten und mit
sehr guten Stereoselektivitdten erhalten werden (Tabelle 2).

Tabelle 2. Synthese der y-Alkylidenbutenolide 3a—q.1*)

1. 2.7 Aquiv. LDA o)
2. 1.0 Aquiv. 2d N )
R\MW 3. HCI, Hy,0 Ho— = R
R2 THF, -78 °C R g7 R
(1.2 Aquiv.)
1a-q 3a-q
3 R! R R Ausb. [%]
a H H OCH,CH, 75
b H H OC(CH,), 73
c H H CH, 56
d H H N(CH,CH;), 63
e H H CH, 57
f CH, H OCH, 70
g CH,CH, H OCH,CH, 54
h H CH, OCH,CH, 71
i H CH,CH, OCH,CH, 43
j H —CH,CH,O- 73
k H —~CH,CH(CH,)O— 60
1 H —~CH,CH(CH,CH,)O— 38
m CH, —CH,CH,O- 20
n H ~CH,CH,CH,—~ 75
° H —~CH,CH,CH,CH,~ 23
P H —~CH,CH,(CH,)—~ 74
q H —(CgH,)O— 52

[a] Im Fall von 3a—e und von 3h - q betrug das E:Z-Verhiltnis >98:2; bei
3f und 3g betrug es 1:40 bzw. <2:98.

Obwohl fiir die Synthese des Butenolids 3¢ in drei Experi-
menten eine E/Z-Selektivitit von >98:2 erzielt wurde, ist in
einem Experiment (wahrscheinlich aufgrund zu hoher Tem-
peratur bei der Zugabe von 2d) lediglich ein Isomerenge-
misch (5:1) isoliert worden, was eine unabhingige Bestiti-
gung der E-Konfiguration der semicyclischen Doppelbindung
ermoglichte: In Analogie zu den 'H-NMR-Daten dhnlicher
Verbindungen!* wiesen beide CH-Signale der Hauptkompo-
nente (E)-3c¢ eine groBere chemische Verschiebung als die
entsprechenden Signale der Minderkomponente (Z)-3¢ auf.
Ausgehend von den R!- oder RZ-substituierten Acetessig-
estern 1f-i wurden die entsprechend substituierten Bute-
nolide 3f-i in guten Ausbeuten und mit sehr guten Stereo-
selektivitdten hergestellt. Im Falle der Butenolide 3f und 3g
wurden ausgezeichnete Stereoselektivititen zugunsten der Z-
Isomere erzielt. Die Z-Konfiguration von 3g wurde durch
NOE-NMR-Messungen zweifelsfrei bewiesen. Die vollstidn-
dige Selektivititsumkehr erkliren wir mit dem sterischen
EinfluB der Alkylsubstituenten in der -Position des Bute-
nolids.l®!
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Durch den FEinsatz cyclischer 1,3-Dicarbonylverbindungen
1j-o lieBen sich die interessanten y-Alkylidenbutenolide des
Typs 3j—o auf einfache Weise synthetisieren: Die Umsetzung
des Oxalamids 2d mit den Dianionen der 2-Acetyl-y-butyro-
lactone 1j—m lieferte die Butenolide 3j—m in zumeist guten
Ausbeuten und mit sehr guten Stereoselektivitdten zugunsten
der E-Isomere. Ausgehend von 2-Acetylcyclopentanon 1n
konnte das Butenolid 3n in guter Ausbeute hergestellt
werden. Weiterhin wurde ausgehend von 2-Acetylcyclohexa-
non 1o das Butenolid 30 hergestellt. Die geringe Ausbeute
kann durch die notwendige Abtrennung des regioisomeren
Nebenproduktes, das durch Cyclisierung iiber das sekundire
a-stindige Ringkohlenstoffatom von 2-Acetylcyclohexanon
entstanden ist, erkliart werden. Die Reaktion von 2d mit dem
Dianion von 2-Acetyltetralon 1p lieferte das Butenolid 3p in
guter Ausbeute und mit sehr guter Stereoselektivitidt. Durch
Umsetzung von 2d mit dem, unseres Wissens nach bisher
nicht beschriebenen Dianion von 3-Acetyl-2,3-dihydrobenzo-
furan-2-on 1q konnte das y-Alkylidenbutenolid 3q, ein
Analogon des Naturstoffs Calycin,l'”] in guter Ausbeute und
mit sehr guter Stereoselektivitit erhalten werden.

Durch Cyclisierung der Dianionen der Dicarbonylverbin-
dungen la—q mit N,N'-Dimethoxy-N,N'-dimethylethandi-
amid 2d konnten eine Reihe unterschiedlich substituierter
a-Hydroxy-y-alkylidenbutenolide regio- und stereoselektiv
hergestellt werden. Die fiir die Butenolide 3a—q erzielten
Ausbeuten sind angesichts der Tatsache, dal aufgrund der
labilen Oxalsdurestruktur des Weinreb-Amids 2d prinzipiell
eine Reihe von Nebenreaktionen (z. B. Decarbonylierung!'4)
moglich sind, insgesamt sehr zufriedenstellend.['™ Die vorge-
stellte Reaktion ist eine erhebliche Erweiterung der Metho-
den, die zur Herstellung der pharmakologisch relevanten und
fiir die Naturstoffsynthese wichtigen y-Alkylidenbutenolide
bekannt sind, und besticht durch die Einfachheit ihrer
Ausfiithrung.

Experimentelles

Typische Arbeitsvorschrift: Herstellung des y-Alkylidenbutenolids 3a:
Eine Losung von Lithiumdiisopropylamid (LDA) in THF wurde durch
Zutropfen von nBuLi (1.44 mL, 3.4 mmol, 2.35m Losung in n-Hexan) zu
einer Losung von Diisopropylamin (0.44 mL, 3.4 mmol) in THF (20 mL)
bei 0°C hergestellt. Nach 15 min Riihren bei 0°C wurde 1a (0.19 mL,
1.47 mmol) zugegeben, und die Losung wurde 45 min bei 0°C geriihrt.
Anschlieend wurden bei —78°C zu dieser Losung zundchst N,N,N',N'-
Tetramethylethylendiamin (TMEDA; 0.5 mL, 3.4 mmol) und anschlieBend
eine Losung von 2d (220 mg, 1.25 mmol) in THF (4 mL) zugegeben. Die
Temperatur der Reaktionslosung wurde innerhalb von 5.5h auf 0°C
erhoht. Das Kiihlbad wurde entfernt, und die Reaktionsmischung wurde
30min bei 20°C geriihrt. AnschlieBend wurden 4 mL einer 10proz.
wilrigen HCI-Losung zugegeben, es wurde 10 min geriihrt, wonach
20 mL einer 10proz. wiBrigen HCI-Losung zugefiigt wurden. Die walrige
Phase wurde mehrfach mit THF/Diethylether (1/3) extrahiert. Die
vereinigten organischen Phasen wurden getrocknet (MgSO,), filtriert,
und das Losungsmittel des Filtrates wurde am Rotationsverdampfer
entfernt. Durch Reinigung des Riickstandes durch priaparative Chromato-
graphie (Kieselgel, Ether/Petrolether, 1/10 —1/3) wurden 170 mg eines
farblosen Feststoffes erhalten. 'H-NMR ([Dg]Aceton, 200 MHz): 6 =1.32
(t,/=8Hz,3H, CH;),4.22 (q,/ =8 Hz,2H, CH,), 5.71 (s, 1H, CHCO,Et),
7.20 (s, 1H, Ring-CH); *C-NMR ([D4]Aceton, 50 MHz): 6 = 14.43 (CH,),
60.94 (CH,), 98.68 (CHCO,Et), 108.76 (Ring-CH), 150.34, 160.74, 164.22,
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166.10 (C); MS (EI, 70 eV): 184 (M*, 17), 156 (20), 139 (69), 69 (100). Alle
neuen Verbindungen wurden durch spektroskopische Methoden und durch
hochaufgeloste Massenspektren und/oder Elementaranalysen charakteri-
siert.
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Das Hexacarbaboran arachno-C,B¢H,, und ein
methyliertes Pentacarbaboran arachno-
CH;C;B,H;,: Bereiche mit beginnenden
Kohlenwasserstoffeigenschaften in
Boranclustern®*

Bohumir Griiner, Tomas Jelinek, Zbynék Plzak,
John D. Kennedy, Daniel L. Ormsby, Robert Greatrex
und Bohumil Stibr*

Die Grundstruktur der Kohlenwasserstoffe weist Elemente
des Diamant- oder des Graphitgitters oder Kombinationen
aus beiden mit peripher gebundenem Wasserstoff auf. Allen
Polyborangertisten liegen die kafigartigen Dreieckspolyeder
zugrunde, deren Eckpunkte mit untereinander verbundenen
BH-Einheiten besetzt sind. Bei gemischten Hydriden treten
Zwischenstufen dieser Strukturtypen auf, und es besteht ein
grof3es Interesse, zu erfahren, welcher Strukturtyp begiinstigt
oder benachteiligt wird, wenn das Kohlenstoff/Bor-Verhiltnis
verdandert wird. Gibt es bei zunehmendem Kohlenstoffgehalt
einen abrupten Ubergang vom Borancluster zum Kohlen-
wasserstoffskelett oder werden vielmehr Bereiche mit Koh-
lenwasserstoff- bzw. Boraneigenschaften nach und nach im
gleichen Molekiil auftreten? Dieses Verhalten ist moglicher-
weise bei einem C/B-Verhiltnis von ungefahr eins zu erwarten.

Das hoch substituierte Carboran C,BsH¢Et; 1 hat die
zwolfeckige polyedrische Trommel-Struktur LI Dies ist
formal eine arachno-Struktur, die aus dem geschlossenen
14eckigen 1:6:6:1-Dg4-Polyeder II durch Entfernen der api-
calen sechsfach gebundenen Eckpunkte erhalten wird. Wir
dagegen berichten hier, da3 die unsubstituierte Verbindung
C¢B¢H,, 2 eine davon deutlich abweichende u-6,9-(CH=CH)-
arachno-5,6,8,10-C,BsH;(-Struktur (Abbildung 1) aufweist, in
der ein zehneckiger arachno-C,B¢-Cluster durch eine Ethy-
lengruppe mit Kohlenwasserstoffeigenschaften {iiberbriickt
wird (Struktur III). Dies ist ebenfalls formal eine zwolfeckige
polyedrische arachno-Struktur, die aus dem geschlossenen
14eckigen 2:2:2:4:2:2-C,,-Polyeder IV durch Entfernen zwei-
er sechsfach gebundener Eckpunkte entsteht.

2 wurde neben den bereit beschriebenen Tetracarbabora-
nen?l und anderen Carboranen durch die Umsetzung von 4,5-
C,B,H, mit Acetylen in Et,O in Gegenwart von 0.1 Aquiva-
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